Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1
نویسندگان
چکیده
Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel diseases (IBD) share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded protein response (UPR), alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment, including the microbiota via receptors and transporters. Subsequently, mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling. This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity, and disease.
منابع مشابه
Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability
BACKGROUND AND AIMS Obese and diabetic mice display enhanced intestinal permeability and metabolic endotoxaemia that participate in the occurrence of metabolic disorders. Our recent data support the idea that a selective increase of Bifidobacterium spp. reduces the impact of high-fat diet-induced metabolic endotoxaemia and inflammatory disorders. Here, we hypothesised that prebiotic modulation ...
متن کاملGLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering.
Hypoglycemia and hyperglycemia are both predictors for adverse outcome in critically ill patients. Hyperinsulinemia is induced by inflammatory stimuli as a relevant mechanism for glucose lowering in the critically ill. The incretine hormone GLP-1 was currently found to be induced by endotoxin, leading to insulin secretion and glucose lowering under inflammatory conditions in mice. Here, we desc...
متن کاملInvolvement of the gut microbiota in the development of low grade inflammation associated with obesity: focus on this neglected partner.
Nowadays, the literature provides evidence that obesity, type 2 diabetes and insulin resistance are characterized by a low grade inflammation. Among the environmental factors involved in such diseases, the gut microbiota has been proposed as a key player. This neglected "organ" has been found to be different between healthy and or obese and type 2 diabetic patients. For example, recent data hav...
متن کاملThe role of the gut microbiota in energy metabolism and metabolic disease.
Obesity is now classically characterized by a cluster of several metabolic disorders, and by a low grade inflammation. The evidence that the gut microbiota composition can be different between healthy and or obese and type 2 diabetic patients has led to the study of this environmental factor as a key link between the pathophysiology of metabolic diseases and the gut microbiota. Several mechanis...
متن کاملGut microbiota, enteroendocrine functions and metabolism.
The gut microbiota affects host metabolism through a number of physiological processes. Emerging evidence suggests that gut microbes interact with the host through several pathways involving enteroendocrine cells (e.g. L cells). The activation of specific G protein coupled receptors expressed on L cells (e.g. GPR41, GPR43, GPR119 and TGR5) triggers the secretion of glucagon-like peptides (GLP-1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016